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Abstract—Basic concepts of first-order phase transitions are formulated, and the state of the art in this field is
considered using nanoparticle nucleation and growth as examples. General equations are presented to describe
the nanoparticle size distribution function; the average nanoparticle radius; and the density, morphology, and
composition of the new phase. Examples are given to illustrate the catalytic effect of nanoparticles on the kinet-
ics of first-order phase transitions in multicomponent systems. The effect of the acidity (pH) of the medium on
phase transitions in solutions and the effect of mechanical stress on the nucleation, evolution, and properties of

quantum dots are considered.
DOI: 10.1134/S0023158408010102

The striking progress in microelectronics, optoelec-
tronics, optics, and related fields of engineering in
recent decades is due to the development of thin-film
semiconductor technologies. In recent years, the focus
of researchers’ interest has shifted from continuous
films to nanostructures. There is every reason to believe
that the use of nanostructures in optics, microelectron-
ics, chemistry, chemical catalysis, biology, and medi-
cine will lead to a qualitative breakthrough in the tech-
nical development of mankind. Due to their developed
surface, nanosystems possess unique properties. For
example, nanocrystals usually have no dislocations or
other linear defects. Furthermore, carrying out reac-
tions on nanostructured catalysts may significantly
change their rate and mechanism.

Nanostructures can be obtained by various methods.
Nanocrystals on the surface of a solid substrate are
obtained from the vapor, liquid, or solid phase. Various
chemical and gas-transport deposition methods are
very efficient. Among these, the sol—gel technology and
electrodeposition are used to produce nanocrystals.
Here, we will not consider particular methods of nano-
crystal deposition on solid supports. Rather, we will
focus on nanocrystal formation mechanisms.

Nanocrystal formation is a typical first-order phase
transition. The size distribution of the resulting nano-
particles and, accordingly, the properties and the sur-
face area and structure of the catalyst depend strongly
on the way in which the phase transition takes place and
on the transition rate. In this publication, we will touch
upon the state of the art in nanocrystal production.

' Based on materials presented at the VII Russian Conf. on Mecha-
nisms of Catalytic Reactions, St. Petersburg, July 2—-8, 2006.
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According to the classification dating back to
Ehrenfest [1], all phase transitions can be divided into
first- and second-order transitions. First-order phase
transitions (PT I) are accompanied by abrupt changes
of the first derivatives of the thermodynamic potential,
such as entropy and density. Second-order phase transi-
tions (PT II) are accompanied by abrupt changes in the
second derivatives of the thermodynamic potential,
such as heat capacity and compressibility. It is from the
derivative orders that the phase transitions got their
names. Formally, it is possible to introduce the concept
of higher order phase transitions. For example, there are
phase transitions of order 2.5 [2]; however, such transi-
tions are rare and, for this reason, are not considered
here.

THERMODYNAMICS OF PHASE TRANSITIONS

For a better understanding of the nature of phase
transitions, we will refer to Landau’s thermodynamic
analysis of phase transitions [3]. To do this, we will
consider such thermodynamic functions as free energy,

FMm) = UM)-TS(M) ey
and the Gibbs potential,
® = Fm)-pV. 2

In formulas (1) and (2), U(n) is the internal energy
of the system undergoing the phase transition, 7" is the
temperature of the system, S(n) is the entropy of the
system, p is the pressure of the system, and V is the vol-
ume of the system. The parameter 1 is called the order
parameter and characterizes the degree of order of the
system. It ranges from zero for an entirely disordered
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Fig. 1. Changes of the thermodynamic potential in (a) first-
and (b) second-order phase transitions.

system to unity in an ordered system. The order param-
eter for different systems is defined as follows. For
example, for solid solutions, 1 = (W, — W)/(W, + Op),
where 0, and wg are the probabilities of the atoms A
and B being on some lattice site of the solid solution.
For a liquid—vapor system, the order parameter is
defined as N = (p — p)/P» Where p is the vapor density
and p, is the vapor or liquid density at the critical point.
For ferromagnets, the order parameter is the magnetiza-
tion value: 1 = M. For ferroelectrics, the order parame-
ter is vector polarization: N = P. According to Landau’s
theory, for PT II the Gibbs potential (2) near the transi-
tion point can be expanded into the following series in
order parameter powers:

(D(ps T7 T\) = (I)O(p’ T)
+a(p)(T-T)n* +B(p, )",

where T, is the second-order transition temperature or
the Curie point and o(p) is the pressure-dependent
component of the coefficient A(p, T). Above and below
the transition point (7 > T, and T < T, respectively),

3)

relationship (3) takes another form (Fig. 1a). It is clear
from Fig. 1a that, in the case of PT II, the system passes
from one state into another without having to surmount
an energy barrier; that is, in the case of PT II, no meta-
stable state of the matter is possible and all of the vol-
ume of the system changes its state. Now let us apply
an external field to the system undergoing FT II, and let
this system be below the Curie point. Equation (3) will
then appear as

q)(pa T7 Tl) = (I)O(p’ T)
+A(p, T)n’ + B(p, T)n" - hn.

It follows from Fig. 1b that the field changes the
symmetry of the system. The positions of the minima
and maxima of the Gibbs potential become inequiva-
lent (Fig. 1b). The shallower minimum corresponds to
the metastable state, and the deeper minimum corre-
sponds to the stable state. To pass from one minimum
to the other, the system has to surmount the potential
peak @, ..(p, T). The field that causes this change in
symmetry is the magnetic field (h = H) for ferromag-
nets and the electric field (h = E) for ferroelectrics. For
gas—liquid transitions near the critical point, the ana-
logue of the field is the quantity 4 = p — bt, where p =
P — P, P is pressure, P, is the pressure at the critical
point, t =T—T,, Tis temperature, T, is the temperature
at the vapor-liquid transition critical point, and b is a
coefficient in the expansion of the Gibbs potential in
order parameter powers per unit volume (V) of the sys-
tem: b = B(p, T)/V [3]. Appreciable changes in symme-
try take place in crystal formation and growth, vapor—
liquid transitions, and the formation and growth of var-
ious films and nanostructures (i.e., in PT I). It is these
phase transitions that will be considered below.

“)

Thermodynamics of First-Order Phase Transitions

The principal difference between PT I and PT 1II is
that, for the former, the Gibbs potential as a function of
the order parameter at the transition temperature has
two minima separated by an energy barrier. To pass
from the metastable state to the stable state, the system
has to surmount this energy barrier. As a consequence,
the phase passes from one state to the other not
throughout its volume, but in small portions, which are
called nuclei of the new phase. The system has to form
an interface, which requires a rather large amount of
energy. The height of the barrier separating the stable
and metastable states depends on the interfacial ten-
sion: the greater the interfacial tension, the less readily
the system passes from one state to the other. For exam-
ple, pure water freezes not at 0°C, but at a much lower
temperature, because it is necessary to compensate for
the energy consumption. According to classical nucle-
ation theory, whose founders were Gibbs, Volmer,
Weber, Becker, Doring, Frenkel, and Zel’dovich [4-8],
the total change of the free energy upon the formation
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of spherical particles of a new phase (nuclei) of radius
R is written as

AF(R) = — gnR3Af +4TR%Y, 5)

where Af'is the difference between the free energies of
the phases per unit volume of the system and 7 is the
interfacial tension. The first term in this equation
accounts for the free energy change proportional to the
nucleus volume. This term is negative because it is
energetically favorable for the system to pass from the
metastable state to the stable state. The second term is
the free energy change proportional to the surface area.
This term is positive because the formation of a surface
requires an energy input. Figure 2 schematically shows
the plot of Eq. (5). It can be seen from Fig. 2 that the
new-phase nucleus whose radius corresponds to the
maximum of function (5) is at unstable equilibrium. If
the nucleus size is R < R, the nucleus will dissolve
since a decrease in its size will cause a decrease in the
free energy AF. Conversely, a nucleus whose size is R >
R, will grow since an increase in R relative to R, will
cause a decrease in AF. A nucleus of size R, is called a
critical nucleus. If it has the shape of a sphere, its radius
is calculated as

_ 2y
R, =% - (6)
The work done on the formation of such a nucleus is
161y’
F(Ry) = —L ™
3(Af)

As a system passes from one state to the other,
numerous nuclei with R < R, form there, and only very
few of them pass from the R < R, state to the R > R,
state. This transition takes place only by means of fluc-
tuations and is, therefore, probabilistic in nature. As a
consequence, the nuclei form not throughout the bulk
of the old phase, but in separate regions in a random
way. Some period of time is required for the new phase
to fill the entire space of the old phase. The probability
of the formation of a critical nucleus is calculated using
the thermodynamic theory of fluctuations. The expres-
sion for this probability has the form of the conven-
tional Boltzmann distribution function [3-8]:

~F(R )k T

W=e ", ®)

where kg is the Boltzmann constant and F(R,,) is the
work of the formation of a nucleus of the new phase
(see Eq. (7)).

Let us generalize the above results for PT I in differ-
ent systems. To do this, it is sufficient to write particular
relationships for the free energy difference Af. For a

ko T kT (D —
gas-liquid system, Af — ——1In P _ keT(p — po) :
® Py O P
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Fig. 2. Change of the free energy of formation of a spherical
nucleus of a new phase in a first-order phase transition.

for solutions, Af — Mlni ~ Eu

O ¢ O ¢
is the volume occupied by one atom (molecule) in a
nucleus of the new phase; p and p, are the actual pres-
sure in the system and the pressure corresponding to the
equilibrium between the old and new phases, respec-
tively; and ¢, and ¢ are, respectively, the mean concen-
tration of the substance in the solution and the equilib-
rium concentration [3—-16]. For PT I in ferroelectrics
(switching events) in an electric field below the Curie
point, Af — 2P_E. For ferromagnets with an easy
magnetization plane, Af — 2M_H. Here, P., and M,,
are the equilibrium values of polarization and magneti-
zation [17].

. Here, ®

KINETICS OF FIRST-ORDER PHASE
TRANSITIONS

The main purpose of kinetic studies of phase transi-
tions is to determine the number and size of the appear-
ing nuclei of the new phase. Let us turn to formula (8),
which describes the magnitude of the fluctuations of the
number of nuclei. Usually, these are fluctuations of the
density of atoms or molecules and are not directly
related to nucleation. It turned out that, during phase
transitions, so-called heterophase fluctuations take
place along with density fluctuations. The existence of
heterophase fluctuations was for the first time hypothe-
sized by Frenkel [6]. He assumed that, along with the
fluctuations of the density of atoms, there are fluctua-
tions of subcritical nuclei, which are present in the old
phase even when it is far from the transition point (line).
It is these fluctuations that are responsible for the nucle-
ation of the new phase. Earlier, the German physicist
Volmer hypothesized that the nuclei of the new phase
grow not via a sudden large fluctuation, but via the
gradual addition of molecules of the old phase to the
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nuclei of the new phase [5]. These fluctuations are sim-
ilar to bimolecular reactions and can be represented as

PN & N,N,+N &N, |N,,; +N & N,,.», )

where N, is the smallest heterophase fluctuation con-
sisting of p atoms. This fluctuation is the precursor of a
nucleus of the new phase. Once the number of atoms in
a heterophase fluctuation or in a subcritical nucleus has
reached the critical value, a further increase in the
nucleus size will reduce the free energy AF and,
accordingly, the nucleus will become stable. Calculat-
ing the number of these nuclei and predicting their
future lives is the purpose of the kinetic theory of new-
phase nucleation. The number of nuclei appearing in a
unit time in a unit volume of the old phase is called the
formation rate of the new phase or the nucleation rate.
The mathematical expression for this flux is very simi-
lar to the formula describing the flux of diffusing
atoms. This formal similarity is due to the fact that the
atomic diffusion equation is a particular case of the
more general equation called the Fokker—Planck equa-
tion. An analogue of the Fokker—Planck equation appli-
cable to nucleation kinetics was set up by Zel’dovich
[8]. The Zel’dovich equation appears as

dgli,r) _ 9
o aile o
1 aAF(l) ag(z 1)

where W, ;,  is the diffusion coefficient of the nuclei of
the new phase in the “size space,” which accounts for
the probability of a nuclei passing from the size i to the
size i + 1; AF(i) is the change of the free energy of the
system, which depends on the number of structural
units () in the nucleus of the new phase; g(i, ) is the
function of nucleus distribution over the number of
structural units i at the time moment f; and N(f) =

'[: g (i, ndi is the total number of nuclei. The quantity i

is understood here as the number of structural units of
the old phase. The structural units in the water—ice and
vapor—water transitions are water molecules, the struc-
tural units in copper crystallization are copper atoms,
the structural units in switching events in ferroelectrics
are whole unit cells corresponding to a certain direction
of the polarization vector, and so on. For a spherical
nucleus, the number of structural units is related to its
13

: : .. (4nR’
radius by the simple expression i = (;—m) , where ®
is the volume per structural unit in the nucleus of the
new phase.

The addition of molecules to the surface of a nucleus
increases the nucleus size, and the abstraction of mole-
cules from the nucleus diminishes it. These processes
are random; as a consequence, the nucleus moves now
to the right, now to the left, along the size axis (Fig. 2).
This motion is irregular, like the motion of Brownian

particles in diffusion processes. This is reason why this
motion is called diffusion in the “size space,” and the
analogue of the diffusion coefficient here is the coeffi-
cient W, ;, ;. PT I events are accompanied by a change
in the nucleus size distribution. The nuclei “flow” from
the region in which their concentration is higher to the
region in which their concentration is lower. The size
distribution of these nuclei is described by the function
g(i, t). This function is an analogue of the atom concen-
tration; however, as distinct from the latter, it defines
the number of nuclei of given size in a unit volume of
the old phase. The growth rate of a nucleus of the new
phase (V)) is given by the equation

di 1 0AF
Wiy T 91

It follows from Eq. (11) that, to the left of the point
of the maximum of the function AF (Fig. 2), where the
nucleus size is subcritical, the growth rate is negative
and the nuclei will dissolve. Conversely, supercritical
nuclei will grow because their growth rate is positive.
The growth rate of a critical nucleus is zero because

OAF

9i
(Fig. 2).

Thus, it follows from Eq. (10) that subcritical nuclei
can grow only via the random addition of molecules of
the old phase to their surface; that is, they diffuse in the
“size space.” Since their regular growth rate is negative,
the following procedure is used to derive particular
forms of relationship (11) and to determine the coeffi-
cient W, ;. [10, 11, 14-19]. Initially, the growth mech-
anism of the nucleus of the new phase is determined.
For example, there are two basic mechanisms of the
isothermal growth of nanostructures from one-compo-
nent vapor on the surface of crystalline substrates. One
is matter transport (i.e., diffusion) to an island, and the
second is the transfer of atoms across the interface
between the old and the new phases (boundary kinet-
ics). Figure 3 schematizes the five basic mechanisms of
nanostructure growth from one-component vapor.
Mechanisms 3a and 3b describe the growth of unfac-
eted (left) and faceted (right) islands of the new phase
on a smooth surface. The mechanism depicted in
Fig. 3c describes the growth of islands on substrates
having linear defects. In turn, each of these mecha-
nisms can take place in two regimes: the growth rate
can be controlled either by atomic diffusion or by
boundary kinetics. It is clear from Fig. 3 that, in some
cases, atoms from the vapor phase are initially adsorbed
by the surface (Fig. 3a) and then diffuse toward the
island and add to it along its perimeter. In other cases
(Fig. 3b), atoms from the vapor phase are fixed directly
on the island surface. In island growth on stepped sur-
faces (Fig. 3c), the atoms are initially localized on a
smooth area of the substrate, and then they diffuse to
the step to incorporate into the island. In the general
case, the growth mechanism can be complicated. For

V.=

=T = (11)

= 0 at the point of the maximum of the function

KINETICS AND CATALYSIS Vol. 49 No. 1 2008



PHASE TRANSITIONS AND THE NUCLEATION OF CATALYTIC NANOSTRUCTURES 83

5 (a)

2 7 [ ] \¢ 3 7 /50
1 *l*l 6 1 ¢<_l l 6
® o e o
1 o> 03
(d)
° I ®
A
J
o ! No
8 5
[ 4
eJ

4

Fig. 3. Basic island growth mechanisms [15]: (a) growth of faceted and unfaceted islands controlled by the surface diffusion of the
adatoms; (b) atomic diffusion in the vapor phase or evaporation/condensation; (c) growth of unfaceted islands via matter adsorption
from the vapor phase onto their surface, with heat removed through the entire surface; (d) the same, but with heat removal only
through the substrate; (e) island growth by linear diffusion along the steps of the substrate. (/) Substrate; (2) unfaceted island;
(3) faceted island, whose surface adds atoms only in certain places; (4) island at a substrate step; (5—8) atom in the vapor phase,
on the substrate surface, on the island surface, and at the substrate step, respectively; (9) heat fluxes.

example, in many cases, it is necessary to take into
account the heat released and withdrawn during the
growth of the islands. The islands may grow via chem-
ical reactions, and this case will be considered below. In
ferroelectric PT I events, the growth of the nuclei of the
new phases is determined by the displacement of atoms
in the unit cells from one equilibrium state to another
[17]. It was proved theoretically [14—19] that all the
mechanisms, irrespective of their nature, can be
described by the following equation (in the quasi-
steady-state approximation):

] 1) .(m-
g — mg( )l(m 1)/7”’ (12)
dt to
where &(7) is a dimensionless quantity characterizing
the deviation of the system from the equilibrium state;
KINETICS AND CATALYSIS 2008
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1, is a constant having dimensions of time, called the
characteristic island growth time; and m is the growth
index, which, for any system, takes only positive values
(m=1,3/2,2,3)and depends on the shape of the island
and the type of the rate-limiting step. The constant ¢,
involves all the basic kinetic coefficients governing the
island growth rate. Consider the quantity &(¢). For nano-
particle growth from solutions, &(¢) = @ — 1 (super-

saturation); for nanoparticle growth from the melt,

(1)

En=1- T (supercooling). For phase transitions in

0

oo

duced in our earlier publication [17] and is called super-

ferroelectrics, &(r) = — 1. This quantity was intro-
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polarization. In the expressions for &(7), the quantities
c(t), T(t), and P(r) are the initial values of concentration,
temperature, and polarization, respectively, and c..,, T..,
and P, are the corresponding equilibrium values.
Supersaturation, supercooling, superpolarization, and
the like are the driving forces of phase transitions. As
the particles grow in the course of a phase transition,
they increasingly adsorb matter from the old phase and
reduce (7). In turn, this slows down the growth of the
nanoparticles and shifts the nucleation barrier (Fig. 2)
to larger radii. Therefore, for determining the number
of nanoparticles formed and the particle size distribu-
tion, it is necessary to supplement Eq. (10) with a &(7)
conservation equation. For nanoparticle growth on a
solid substrate, the &() conservation law appears as

&) = &+ 1 ' [l& - E()1ar + ' g (i idi, (13)
0 0

where & is the initial supersaturation on the substrate
&= Jyt/n, — 1, J, is the flux of atoms being adsorbed
from the medium onto the surface, T is the lifetime of
adsorbed atoms (called adatoms) on the surface, and n,
is the equilibrium concentration of adatoms. For phase
transitions in the other systems, the universal law (13)
will have the same form, but &, will take another partic-
ular form. For example, for growth from the melt,
0
E—1- ;— where T° is the initial melt temperature.

o

XSOEO

For ferroelectrics, &, = , where % is the relative

oo

dielectric susceptibility, €, is the vacuum permittivity,

and E° is the strength of the external electric field. The
characteristic time should be modified in a similar way.
For example, for phase transitions in ferroelectrics, T =

kBTXSO/ZBOpi, where [, is the Kkinetic coefficient

describing the velocity with which atoms in crystal sub-
lattices pass from one state into another.

Equations (10)—(13) provide a basis for the kinetic
description of first-order phase transitions in any sin-
gle-component system. They make up a complicated
nonlinear set of equations. The problem of solving such
equations is nontrivial, and many researchers continue
developing mathematical approaches to this problem
[9-11, 13, 15, 16, 18]. At present, the most promising
approach is that in which characteristic stages of the
phase transition are separated and characteristic times
are introduced for each of them. “Rapid” and “slow”
variables are introduced for the characteristic times.
Solutions are sought for each stage and are then joined.
Three characteristic periods of time are usually distin-
guished. In the first period, supersaturation is fairly
high because the nuclei of the new phase are so few that
they have been unable to absorb a sufficient number of
atoms. Therefore, to determine the characteristics of

nucleation at this stage, it is sufficient to solve Eq. (10),
while Eq. (13) may be left out of consideration and &(r)
can be taken to be constant. At this stage, nuclei form
only by fluctuations. The solution of Eq. (10) for this
stage is

I'= ny J=F"(i)/2nkg TW (i) exp(—F(ie)/ kg T),
(14)

where W(i,), F(i.,), and F'(i.,) are, respectively, the
diffusion coefficient in the “size space,” the work of
formation of a critical nucleus, and the second deriva-
tive of the free energy at the critical nucleus size point
and n, is the density of adatoms at the phase transition
onset time. The calculation of W(i,) has already been
discussed. For example, for the growth of new-phase
nuclei on a substrate via the surface diffusion mecha-
nism (Fig. 3), this coefficient is equal to

W(iy) = 2Runlo(Vy/4)exp(~Ey/kyT)

(15)
= 21'CRcrn1Da/lo,

where D, = (1(2) v/4)exp(—Ey/kgT) is the diffusion coeffi-
cient of adatoms on the substrate for disc-shaped two-
dimensional particles, R, is the radius of the critical
nucleus, £, is the activation energy of surface diffusion,
and [, is the diffusion hop length (which is of the same
order of magnitude as the lattice constant of the sub-
strate). Expression (14) is Zel’dovich’s famous solu-
tion. It is applicable only to the earliest stages of nucle-
ation.

In reality, extensive nucleation takes place rather
rapidly. Sometimes, most of the substance transforms
into a new phase within a few tens of microseconds. In
this case, supersaturation cannot be considered to be
constant. In the analysis of such a process, the set of
equations (10)—(13) is considered not throughout the
range of island radius values (Fig. 2), but only near the
maximum of function (7), that is, near the critical radius
of the new-phase nucleus. This makes it possible to
simplify Egs. (10)—(13) and to use the value of flux (14)
as a boundary condition. As a result, the set of equa-
tions is solvable by the perturbation method applied to
the small parameter € = 1/T" (I' =i, > 1, where i, is the
number of particles in the critical nucleus at § = &;). The
solution appears as

So

(1) = : : (16)
L+ (/)T (1) @i (T (1))
k
1) = 15y 22T OUTON o
1+ (/)T (1) @i (T (1))
N(1) = 1(&0)t, i (T (1)), (18)
KINETICS AND CATALYSIS Vol. 49 No.1 2008
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In Egs. (16)—(20), the coefficient k is determined by
the nanoparticle growth mechanism, which is related to
the coefficient m in Eq. (12) as k =m — 1; p = i'™; &(1)
is supersaturation at the time #; N(¢) is the density of
nanoparticles at the time #; g(p, t) is the nanoparticle
size (p) distribution function; @,(x) is an auxiliary func-
tion [15]; and 7(¢) is renormalized time. Equations (16)—
(20) describe the kinetics of PT I in all systems, irre-
spective of their physicochemical nature. The time
dependences of the nucleation rate and of the new-
phase island size distribution function are plotted in
Figs. 4-6.

THE LATEST STAGE
OF THE PHASE TRANSITIONS

During a phase transition, the number of particles on
the substrate surface increases and the particles them-
selves grow. Due to this increase in nanoparticle den-
sity and size, the nanoparticles absorb increasing
amounts of the substance from the surface. If the flux of
atoms onto the substrate decreases with time, the super-
saturation & on the surface tends to zero. Obviously,
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Fig. 5. Time variation of the nucleation rate at I' = 10. k =
(1)0,(2) 1/2,(3) 1, and (4) 2.

new nanoparticles do not form under these conditions.
The nanoparticles begin to interact in a specific way.
This interaction takes place through the generalized
self-consistent diffusion field of the adatoms. The
islands of size R < R, dissolve in the diffusion field
because the equilibrium concentration of atoms, which
depends on the island radius, is higher than the average
concentration of atoms on the substrate. The islands of
radius R > R, grow because the equilibrium concentra-
tion of atoms there is lower than the average concentra-
tion of atoms on the surface. A specific feature of the
behavior of the nanoparticle ensemble at this stage is
that, as the supersaturation decreases, the critical radius
R, increases, as follows from formula (6). If at some
point in time the nanoparticle radius is larger than the
critical radius and the nanoparticles grow, then it is pos-
sible that next moment their radius will be below the
critical radius and they will dissolve. The nanoparticles
whose radius is still above-critical absorb matter from

§(R’ DERI(Eo)tg

1.5
RIR,

Fig. 6. Size distribution function for the islands of the new
phase: I' = 10; k = 2; t = (1) 0.541, (2) 1.7t;, and (3) 4.41.



86 KUKUSHKIN, OSIPOV

the surface and thereby increase the critical radius in
the system. However, it is possible that their radius will
soon become subcritical and they will start to dissolve.
In the infinite-time limit, a single particle would be
expected to remain on the substrate surface. However,
this will never happen, because, as the number of parti-
cles on the surface decreases, the interparticle distance
increases. At some point in time, the free path length for
the adatoms will become shorter than the mean inter-
particle distance and the generalized diffusion field will
vanish. The adatoms that are far from the particles will
evaporate from the surface before they can add to a par-
ticle. In real systems, the density of islands is fairly
high and adatoms are continuously supplied to the sur-
face. On reaching some size, the islands collide with
each other and the process stops. This last stage of the
phase transition is called Ostwald ripening. The mathe-
matical analysis of this process, like the analysis of the
previous stage, is based on Egs. (10)—(13). For the first
time, Egs. (10)—(13) for the evolution of the new phase
at the Ostwald ripening stage were solved by Lifshits
and Slezov [20]. In a later monograph [21], we obtained
a rigorous asymptotic solution describing the evolution
of an ensemble of new-phase nuclei at the Ostwald rip-
ening stage. This solution is somewhat different from
Lifshits and Slezov’s solution. The solutions presented
in [20, 21] prove that any arbitrarily complex system
consisting of an ensemble of new-phase nuclei in the
old phase is governed by the following universal law at
the latest stage of the phase transition:

R.(t) = consts'"”, 21)
N(t) = const"“”, (22)
_ N(1) s R

&0 = 3 o7 ww) 29

P

P _ u

,,(u) up+1—(p+l)u+p

(24)

X eXp d—n(p+1)Jf x"dx
2 uxp+1—(p+1)x+p

where P,(u) is the distribution function normalized to

unity so that J.: P,(udu=1,

Prio-D" -’
pup -1
and u = (p — DR/pR,,. Here, P,(u) is the particle size
distribution function for the new phase at the time
N(#) is the density of nuclei of the new phase; R (¢) is
the average nucleus radius; p is a coefficient depending
on the nucleus growth mechanism, which is related to
the above-introduced coefficient m as p = d/m + 1,
where d = 2 or 3, depending on the dimensionality of

; (25)

vy(u) =

the space in which the phase transition occurs (for
nuclei on a substrate surface, d = 2; for nucleus growth
in a three-dimensional system, d = 3). P,(u) is a unified
function. Its particular forms for different new-phase
growth mechanisms can be found, e.g., in [14, 16, 19—
21]. The argument of this function is u = (p — 1)R/pR.,..

One of the most important theoretical results is that
a universal nucleus size distribution independent of the
initial conditions forms at the latest stage of PT 1. The
distribution function retains its original form until the
system comes to equilibrium. Thus, in the course of a
phase transition, any system “forgets” its initial state
and passes to the stable asymptotic state that is the same
for all systems. This state is characterized by a univer-
sal distribution function P,(u) depending only on the
growth mechanism of the new phase in the system.

CHEMISTRY AND PHASE TRANSITIONS

Here, we will demonstrate how phase transitions are
affected by chemical factors, such as the presence of
several components, the rate of the reactions taking
place, and the acidity of the medium. These problems
were addressed and discussed in detail in a number of
earlier works [9, 13-16, 19, 22-27]. In this publication,
we will briefly report the main results. Note that, no
matter what the system, the number of components,
etc., the above general approach to the analysis of phase
transitions will be the same. All basic equations in their
formal notation will also be the same.

Multicomponent Nanosystems

Multicomponent systems whose components are
completely miscible in different phases. For phase
transitions in such systems, the Zel’dovich equation
appears in modified form. It is multidimensional, and
the diffusion coefficient in the “size space” depends on
the component concentrations in the system. The nucle-
ation rate / (Eq. (14)) takes the form of

I= nl(Z ijexp<—Ho>,

k=1

(26)

where W, is the diffusion coefficient of the kth compo-
nent of the m-component system in the size space ati =
i., [14, 15], H, is the barrier to multicomponent nucle-
ation, and n, is the density of molecules in the initial
phase. Particular forms of the expression for nucleus
flux (Eq. (26)) for various systems can be found else-
where [14-16, 22-24].

Catalyst effects on phase transitions. If, in a sys-
tem undergoing a phase transition, complicated chemi-
cal reactions occur and yield a new phase catalyzing
one of the intermediate reactions, then self-organiza-
tion and autooscillations will be possible under certain
conditions [14-16, 26]. Suppose that the substrate sur-
face contains atoms of the substances A and B and that
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their concentration is below the concentration neces-
sary for the formation of nuclei from these components.
Suppose that these components react to yield the prod-
uct C. In the case of a large excess of the component B
on the surface, the reaction rate will be controlled only
by the concentration of the component A. Suppose now
that the reaction product C catalyzes one of the interme-
diate steps of the reaction; that is, this substance ini-
tiates its own formation. Let the surface concentration
of C exceed the equilibrium concentration C,, at some
moment in time. The nuclei of a new phase from the
product C will then begin, and the resulting nuclei will
absorb atoms of the substances A and B. If the number
of nuclei becomes sufficiently large, it will be possible
that the number of the atoms A and B would be insuffi-
cient for the reaction to proceed and the concentration
of the substance C on the substrate surface would be
insufficient for the growth of the nuclei. When the con-
centration of C becomes lower than the equilibrium
concentration, the nuclei will begin to dissolve. This
will indicate that a negative feedback has appeared in
the system: a decrease in the number of nuclei will
cause their growth, and vice versa, a buildup of nuclei
will cause their dissolution.

The substance C formation rate may depend not
only on the reaction rate constant, but also on the diffu-
sion rates of the atoms of A and B to the locus of the
reaction. If this is the case, both time and space varia-
tions of the number of new-phase nuclei will be possi-
ble. According to Prigogine’s definition, this process is
called self-organization. However, the above circum-
stances are insufficient for self-organization to take
place. It is necessary that the rate of substance C forma-
tion, which is assumed to be catalyzed by C itself,
should be a nonlinear function of the concentration.
The simplest nonlinearity has the form of kAC?, where
k is the rate constant of the reaction. If these conditions
are satisfied, time oscillations of the number of islands
or spatial self-organization can occur in the system. For
example, the time oscillations of the number of nuclei
are described by the following set of equations:

dA 2

—_— = — A

— = Jy—kAC

d€ _ rac®—yNC 27)
dr

dN

a Bo(C-C..).

In these equations, J, is the rate of the arrival of the
component A at the surface, k is the rate constant of the
chemical reaction, 3 is the coefficient of proportional-
ity between the concentration and growth rate of the
islands of the new phase, and y is another coefficient of
proportionality.

Let us consider each of the three equations in (27).
The first equation describes the rate of change of the
component A concentration. This rate depends on the
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flux J, and on the rates of component A conversion

(kAC?). The term kAC? means that the substance A itself
reacts with the product C and thus activates its forma-
tion. The second equation indicates that the concentra-
tion of the product C increases owing to its synthesis in
the reaction involving the component A and decreases
because of the absorption of C by the islands of the new
phase. The third equation in (27) describes the rate of
increase of the number of nuclei. In the model consid-
ered, this rate is assumed to be proportional to the
supersaturation value (C — C.). An analysis of this set
of equations [14-16, 26] demonstrated that, at a sub-

stance flux of J;, > kCZ — By/k, the behavior of the sys-

tem may be unstable and sustained oscillations of the
concentrations N(¢), C(t), and A(f) may occur there. The
number of nuclei in such a system may fall to zero.
Experimental studies of the growth of films of the high-
temperature superconductor YBa,Cu;0,_, [28] gave a
surprising result: at the earliest stages of growth, the
density of islands oscillates. We studied a more general
case of self-organization during phase transitions [14—
16, 26]. It was demonstrated that self-organization
takes place when the diffusion coefficient of the prod-
uct (D) is far below the diffusion coefficient of the
reactant A (D,): D << D,. Self-organization in this case
takes place as follows. The nuclei of the new phase
absorb the substance A from the surface and thus
decrease its concentration. This slows down the reac-
tion yielding the substance C. This reduces the driving
force of nucleation. The diffusion of the components A
and C causes spatial nonuniformity of their distribution
over the surface and, accordingly, nonuniformity of the
rate of nucleation on the substrate. Thus, the initial
symmetry of the substrate changes and the entire sys-
tem becomes spatially nonuniform. As a consequence,
the film structure will vary over the substrate surface.
For example, if the nuclei of the new phase are semi-
conductors having different band gaps, a system of het-
erostructures may appear on the substrate surface. The
band gap in such a heterostructure will vary periodi-
cally over the substrate surface.

Effect of the acidity of the medium (pH) on the
kinetics of first-order phase transitions and nano-
structure formation. One method of heterostructure
preparation is matter deposition from ionic solutions. In
this method, the acidity of the solution, which is char-
acterized by pH, may play a crucial role in the nano-
structure nucleation kinetics. pH has a particularly
strong effect on the size distribution function, composi-
tion, and structure of the resulting nanoparticles. By
varying pH, it is possible to efficiently control these
parameters and to obtain nanoparticle ensembles with
desired properties. pH exerts its effect on the nucleation
of the new phase by modifying the equilibrium concen-
trations of the components from which the nanoparti-
cles grow. This changes the supersaturation value and,
accordingly, all the basic parameters of the phase tran-
sition, including the nucleation rate and the nanoparti-
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Fig. 7. pH dependence of the nucleation rate for aqueous
solutions of Pb(OH), and CaCOj in the cases of diffusion-
controlled nucleation ((/) Ip(Ca(OH),, (2) IpPb(OH),,
(3) IpCaCO3) and boundary kinetics—controlled nucleation
((1") IggCa(OH),, (2') IgxPb(OH),, (3') IgxCaCO3).

cle size distribution function. The effect of pH on the
nucleation rate was studied for the deposition of ionic
salts from solutions [25]. In the case of nanoparticle
growth controlled by boundary kinetics, specifically,
the addition of atoms to the nucleus surface, the nucle-
ation rate as a function of pH is expressed as

167573032

Ji H) = , (28
sw(PH) = 7 3&2<pH><kBT>3j 29

BN exp
2 ks T

where B is the specific boundary flux (which depends
on the abstraction/addition energy of atoms from/to the
nucleus surface), n, is the density of molecules in the
initial phase, and ® is the volume per molecule in the
crystalline phase. The pH dependence of the supersatu-
ration value for various ionic equilibria is reported in
[25]. For crystallization of a poorly soluble base, such
as M" + nOH™ = M(OH),,L, where M is the ion of an
n-valent metal and OH is the hydroxyl group, &(pH) =

K, exp((2.3pHn)C, - SPyicom),)

where SPy o =
; )
SPyicom), (

C2 C. is the solubility product, K, = 10-'*is the ionic
product of water, C_. is the equilibrium concentration

of metal ions, C,, is the equilibrium concentration of
hydroxyl groups, and C, is the concentration of metal
ions at the onset of crystallization. Figure 7 plots the pH
dependence of the nucleation rate for the crystallization
of some poorly soluble salts and bases from aqueous

solutions in the cases of the crystal nucleation rate con-
trolled by diffusion and boundary kinetics.

THE LATEST STAGE OF PHASE TRANSITIONS
IN MULTICOMPONENT SYSTEMS

The Ostwald ripening processes in multicomponent
systems are much more diversified than those in one-
component systems because matter redistribution
among nanoparticles is due not only to the difference in
particle size, but also to chemical differences. A
detailed analysis of this phenomenon can be found in
[14-16, 19, 29]. The results obtained amount to the fol-
lowing. The general form of the nanoparticle ensemble
evolution equations (Eqgs. (21)—(25)) remains
unchanged. However, now we have not one, but several
sets of equations describing the evolution of each
chemical compound (phase s). The number of these sets
of equations is equal to the number of compounds con-
stituting the nanoparticles. Equations (21)—(25) are
supplemented by extra equations interrelating the com-
mon components of the phases and defining the phase
coexistence regions (phase boundaries) during the evo-
lution of the phases. The form of these extra equations
depends on the initial concentrations of the substances,
on their external sources, and on the heats of the chem-
ical reactions occurring in the system.

FORMATION AND EVOLUTION
OF NANOSTRUCTURES UNDER THE ACTION
OF MECHANICAL STRESS

Films with a perfect crystal structure (so-called epi-
taxial films) can be grown if the lattice constants of the
film and the substrate differ by no more than 7% [14,
15, 30-37]. At the initial stages of film growth, when
nanoislands form, it is possible to obtain islands coher-
ently conjugated with the substrate if the lattice mis-
match is no greater than 7%. The formation of coherent
islands (free of lattice mismatch—induced defects) dur-
ing heteroepitaxial film growth was observed for the
first time in 1990 [30] in the Ge/Si(100) system with a
mismatch value of 4.2%. Thus, a novel, dislocation-free
film growth mechanism was discovered. Before 1990,
it was believed that three-dimensional heteroepitaxial
growth (so-called Stranski—Krastanov growth) can take
place only as a result of the formation of lattice mis-
match dislocations at the island/wetting layer bound-
ary. Since then, interest in coherent nanoislands has
been growing steadily [31-35]. In earlier works [36,
37], we suggested a theory of coherent Ge island
growth on the Si(100) crystal surface and reported a
series of experiments fully confirming this theory. This
coherent nanoisland growth theory [36, 37] is based on
the above-described general principles of PT I theory
and uses slightly modified Egs. (16)—(20) to calculate
the basic properties of the ensemble of coherent nano-
particles. There are two nanoisland growth mecha-
nisms. The first is the classical Stranski—Krastanov
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mechanism, which usually takes place in the case of a
large lattice mismatch between the film and the sub-
strate. According to this mechanism, the islands are not
coherently conjugated with the substrate and mismatch
dislocations appear as a result. The second mechanism
is the modified Stranski—Krastanov mechanism. In the
first mechanism, islands grow owing to the diffusion of
adatoms on the substrate (Fig. 3). In the second, the
strong interaction between the substrate and the mate-
rial being deposited yields a thin (~3-nm) wetting layer
on the surface. Since the deposited material is coher-
ently conjugated with the substrate owing to the small
lattice mismatch, the wetting layer has no dislocations
and, as a consequence, is heavily strained. Increasing
amounts of new atoms incorporate into the surface of
this layer during the growth process. On the one hand,
this increases the elastic stress energy of the wetting
layer. On the other hand, this weakens the bonding
between the substrate surface and the uppermost, newly
formed layers of the material. At a certain thickness of
this layer (let it be h,y), the system comes to equilib-
rium. If the wetting layer thickness 4 is larger than /i,
the layer is unstable and the nucleation of nanoparticles
coherently conjugated with its surface is favorable.
This growth mechanism is called island growth. If & <
heg, the layer continues to grow and no nanoparticles
form. This mechanism is called layer-by-layer growth.
Thus, the h., value determines the crossover from 2D
growth to 3D growth. The nanoparticles nucleating by
this mechanism (their size does not usually exceed
100 nm) have no mismatch dislocations and, as a con-
sequence, possess special physical properties. In phys-
ics, crystalline nanoparticles of semiconductors are
called quantum dots because they have special ener-
getic zones that are due to their small size and the
absence of dislocations.

Let us introduce the quantity & = Eh— — 1. It will be
eq

a measure of the driving force of quantum dot growth.
It is nothing more than an analogue of supersaturation
in PT I and has received the name of superstress [36,
37]. The growth mechanism of these nanoparticles is
based on atomic diffusion, and the driving force of this
diffusion is the relaxation of excess elastic energy. The

value of A, is defined as follows [36, 37]:

D,
heq = hoko ln N

€olg

(29)

where @, = 6,— G;— G, O, is the surface tension of the
substrate, o; is the surface tension of the film, 6, ;is the
film/substrate interfacial tension, A, is the thickness of
a monolayer of the substance being deposited, k; is the
coefficient that accounts for the screening of the inter-
action between the substrate and the wetting layers (for
silicon—germanium layers, this coefficient was esti-
mated in [30]), A is the elastic modulus, €, = (d; — d,)/d,
is the film—substrate mismatch parameter, d, is the lat-
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Fig. 8. AFM image of coherent islands (quantum dots) of
Ge on the Si(100) surface at 7= 500°C and an average dep-
osition rate of 2 ML/min.

tice constant of the film, and d, is the lattice constant of
the substrate. Now that we have introduced & and A, it
is possible to calculate all the basic characteristics of
quantum dot nucleation using Eqgs. (16)—(20). This cal-
culation was carried out in earlier works [36, 37], where
all the basic characteristics of the evolution of quantum
dots were determined. These are the nucleation rate and
the size distribution, surface morphology, and density
of the nanoparticles. By way of example, Fig. 8 pre-
sents an AFM image of Ge quantum dots on the Si(100)
surface. These studies were continued in [38].

NANOPORE AND MICROCRACK FORMATION
IN BRITTLE SOLIDS AND NANOFILMS

Of particular significance for the development of
nanofilm technologies is the investigation of the forma-
tion and thermodynamic equilibria of microstructure
defects (pores and dislocations) in the nanostructures
and nanofilms forming on substrates at large lattice
mismatches of 15-25%. The growth of such micro-
structures induces large mechanical stresses at the
film/substrate interface. These stresses cause the nucle-
ation of nanopores at the interface. Nanopore formation
can significantly affect the properties of the catalyst
being used. A theory of pore and microcrack formation
in brittle solids was suggested in [39-41]. There are two
main physical causes of microcracking [42]. These are
the vacancy-induced nucleation of microcracks and the
formation of microcracks due to dislocation coales-
cence. We have considered only the vacancy-induced
nucleation of pores and microcracks. It was demon-
strated that pore nucleation is similar to crystal nucle-
ation from supersaturated solid solutions. There is
always some equilibrium concentration of vacancies in
the solid bulk. The vacancies in a solid, if their concen-
tration is not high, are thermodynamically similar to an
ordinary gas, which can condense into a liquid as the
pressure is raised. For this reason, such a vacancy
ensemble is called a vacancy gas [3, 6]. When a crystal
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is extended, extra (overequilibrium) vacancies appear
in it. This increases the density of vacancies, just as an
increasing pressure raises the density of an ordinary
gas. The vacancy buildup can cause pore nucleation.
Thus, the vacancy gas and the pores can be treated as
90 _ 12w
kg T Cyo

(o is the normal component of the stress tensor of the
solid before the load is applied, ® is the volume of a
vacancy, ¢, is the vacancy concentration in the strained
crystal, and c,, is the equilibrium concentration of
vacancies at a given temperature) is nothing more than
an analogue of supersaturation. This parameter was
introduced above and was called superstress [39, 40].

It was demonstrated that the pore nucleation rate
under load is

/ 7" Bonfd 16 ny’8
g = ———exXp|—% > |
21, Jky T 3 kyTo

two different phases. The quantity &(7) =

(30)

where [, is the equilibrium flux of the vacancies adding
to the pore and leaving the pore, which is related to the
vacancy diffusion coefficient, and § is the change in the
work of pore formation caused by the pore nonspheric-
ity (usually, 8 = 10-'-1072).

SURFACE TENSION AS A FUNCTION
OF THE NANOPARTICLE SIZE

To conclude, we will note some structural features
of the of the interface between a nanoparticle and the
medium from which it forms. Earlier [43], we demon-
strated that the structure of the nanoparticle/old phase
interface is not sharp and has an intermediate region
(Fig. 9). It was rigorously proved that the dependence
of the surface tension on the nanoparticle radius in the
principal order of perturbation theory is expressed as

6(R) = g R d=10 o(k}—), 31)

R 2

where R is the particle radius (d = 3 for drop-shaped
particles, and d = 2 for disc-shaped particles); G, is the
surface tension of the dense phase; 0 serves as the Tol-
man parameter [44], which is the curvature correction
to the surface tension (this parameter was calculated in
[43]); and O(1/R?) stands for the higher order terms of
the perturbation series. It was proved [43] that it is
unnecessary to further refine the relationship between
the surface tension and the nanoparticle radius, because
the equation used to establish this relationship is valid
only within the first order of 1/R. The change in the sur-
face tension due to the curvature of the nanoparticles is
sufficiently large to exert an appreciable effect on the
nucleation process [45].

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (grant nos. 06-03-32467 and 07-08-
00542), by state contracts (NFM-1/03, NSh-
2288.2003.1), and the St. Petersburg Scientific Center.
We are deeply grateful to T.V. Lavrova for assistance in
the preparation of this article.

REFERENCES

1. Ehrenfest, P., Commun. Leiden Univ., 1933, Suppl.,,
p. 576.
2. Lifshits, .M., Azbel, M.Ya., and Kaganov, M.1., Elek-

tronnaya Teoriya Metallov (Electronic Theory of Met-
als), Moscow: Nauka, 1971.

3. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika
(Theoretical Physics), vol. 5: Statisticheskaya fizika
(Statistical Physics), Moscow: Nauka, 1995, part 1,
p. 606.

4. The Collected Works of J. Willard Gibbs, New York:
Longmans, Green, and Co., 1931.

5. Volmer, M., Kinetik der Phasenbildung, Dresden:
Steinkopf, 1939.

6. Frenkel, Ya.l., Kineticheskaya teoriya zhidkostei
(Kinetic Theory of Liquids), Moscow: Akad. Nauk
SSSR, 1945.

7. Becker, R. and Déring, W., Ann. Phys., 1935, vol. 24,
p- 719.

8. Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12,
no. 11/12, p. 525.

9. Kashchiev, D., Nucleation Basic Theory with Applica-
tions, Oxford: Butterworth Heinemann, 2000, p. 83.

10. Kuni, EM., Shchekin, A.K., and Grinin, A.P., Usp. Fiz.
Nauk, 2001, vol. 171, no. 4, p. 346.

11. Slezov, V.V. and Schmelzer, J.W., Phys. Rev. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002,
vol. 65, p. 031 506.

12. Skripov, V.P. and Faizulin, M.Z., Fazovye perekhody
zhidkost’—par i termodinamicheskoe podobie (Liquid—
Vapor Transitions and Thermodynamic Similarity),
Moscow: Fizmatlit, 2003.

KINETICS AND CATALYSIS Vol. 49 No. 1 2008



13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

PHASE TRANSITIONS AND THE NUCLEATION OF CATALYTIC NANOSTRUCTURES

Shneidman, V.A., Phys. Rev. A: At., Mol., Opt. Phys.,
1991, vol. 44, p. 2609.

Kukushkin, S.A. and Osipov, A.V., Prog. Surf. Sci.,
1996, vol. 151, no. 1, p. 1.

Kukushkin, S.A. and Osipov, A.V., Usp. Fiz. Nauk,
1998, vol. 168, no. 10, p. 1083.

Kukushkin, S.A and Osipov, A.V, in Encyclopedia of
Nanoscience and Nanotechnology, Nalwa, H.S., Ed.,
Los Angeles: American Scientific Publishers, 2004,
vol. 8, p. 113.

Kukushkin, S.A. and Osipov, A.V., Phys. Rev. B: Solid
State, 2002, vol. 65, p. 174101.

Osipov, A.V., Thin Solid Films, 1993, vol. 227, p. 111.

Kukushkin, S.A. and Slezov, V.V., Dispersnye sistemy na
poverkhnosti tverdykh tel (evolyutsionnyi podkhod):
mekhanizmy obrazovaniya tonkikh plenok (Disperse
Systems on Solid Surfaces (Evolutionary Approach):
Solid Film Formation Mechanisms), St. Petersburg:
Nauka, 1996.

Lifshits, .M. and Slezov, V.V., Zh. Eksp. Teor. Fiz.,
1958, vol. 35, no. 2, p. 479.

Kukushkin, S.A. and Osipov, A.V., Zh. Eksp. Teor. Fiz.,
1998, vol. 113, no. 6, p. 2197.

Kuni, EM. and Melikhov, A.A., Teor. Mat. Fiz., 1990,
vol. 83, no. 2, p. 274.

Shneidman, V.A., Zh. Eksp. Teor. Fiz., 1986, vol. 91,
no. 2.

Slezov, V.V. and Schmelzer, J., J. Phys. Chem., 1994,
vol. 55, p. 243.

Kukushkin, S.A. and Nemna, S.V., Dokl. Akad. Nauk,
2001, vol. 377, no. 6, p. 1 [Dokl. Phys. Chem. (Engl.
Transl.), vol. 377, nos. 4-6, p. 117].

Fradkov, A.L., Guzenko, P.Yu., Kukushkin, S.A., and
Osipov, A.V., J. Phys. D: Appl. Phys., 1997, vol. 30,
p. 2794.

Kol’tsova, E.M., Tret’yakov, Yu.D., Gordeev, L.S., and
Vertegrel, A.A., Nelineinaya dinamika i termodinamika
neobratimykh protsessov v khimii i khimicheskoi tekh-
nologii (Nonlinear Dynamics and Irreversible Thermo-
dynamics in Chemistry and Chemical Engineering),
Moscow: Khimiya, 2001.

KINETICS AND CATALYSIS  Vol. 49 No.1 2008

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.
45.

91

Gol’'man, E.K., Goldrin, V.I., Plotkin, D.A., and
Razumov, S.V., Fiz. Tverd. Tela, 1997, vol. 39, no. 2,
p- 204.

Slezov, V.V. and Sagalovich, V.V., Usp. Fiz. Nauk, 1987,
vol. 151, no. 1, p. 67.

Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett., 1990,
vol. 64, p. 1943.

Schukin, V.A., Bimberg, D., Rev. Mod. Phys., 1999,
vol. 71, p. 1125.

Shchukin, V.A., Ledentsov, N.N., Kop’ev, P.S., and Bim-
berg, D., Phys. Rev. Lett., 1995, vol. 75, p. 2968.
Pchelyakov, O.P., Bolkhovityanov, Yu.B., Dvurechen-
skii, A.V., Nikiforov, A.I., Yakimov, A.l., and Voigt-
lander, B., Thin Solid Films, 2000, vol. 367, p. 75.
Alferov, Zh.1., Semiconductors, 1998, vol. 32, no. 1, p. 3.
Bolkhovityanov, Yu.B., Pchelyakov, O.P, and
Chikichev, S.I., Usp. Fiz. Nauk, 2001, vol. 171, p. 689.
Osipov, A.V., Schmitt, F., Kukushkin, S.A., and Hess, P.,
Phys. Rev. B: Solid State, 2001, vol. 64, p. 205421.
Kukushkin, S.A., Osipov, A.V., and Khess, R., Fiz. Tekh.
Poluprovodn. (St. Petersburg), 2002, vol. 36, no. 10,
p- 1177 [Semiconductors (Engl. Transl.), vol. 36, no. 10,
p. 1097].

Dubrovskii, V.G., Cirlin, G.E., and Ustinov, V.N., Phys.
Rev. B: Solid State, 2003, vol. 68, p. 075409.
Kukushkin, S.A., Usp. Mekh., 2003, vol. 2, no. 2, p. 21.

Kukushkin, S.A., J. Appl. Phys., 2005, vol. 98,
p- 033503-1.

Kukushkin, S.A., Osipov, A.V., and Shlyagin, M.G., Zh.
Tekh. Fiz., 2006, vol. 76, no. 8, p. 73 [Tech. Phys. (Engl.
Transl.), vol. 76, no. 8, p. 1035].

Cheremskoi, P.G., Slezov, V.V., and Betekhtin, V.I., Pory
v tverdom tele (Pores in Solids), Moscow: Energo-
atomizdat, 1990.

Gordon, P.V., Kukushkin, S.A., and Osipov, A.V., Fiz.
Tverd. Tela, 2002, vol. 44, no. 11, p. 2079.

Tolman, R.C., J. Chem. Phys., 1949, vol. 17, p. 333.
Brodskaya, E.N., Eriksson, J.C., Laaksonen, A., and
Rusanov, A.L, J. Colloid Interface Sci., 1996, vol. 180,
no. 1, p. 86.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


